
8 * 2^2x - 2 * 2^2x=0


Ответы на вопрос




To solve the equation 8 * 2^(2x) - 2 * 2^(2x) = 0, you can factor out a common term, which is 2^(2x):
2^(2x) * (8 - 2) = 0
Now, simplify:
2^(2x) * 6 = 0
To solve for x, set each factor equal to zero:
- 2^(2x) = 0
- 6 = 0
The second equation, 6 = 0, is never true, so it has no solutions.
Now, let's focus on the first equation, 2^(2x) = 0. This equation cannot be satisfied because 2 raised to any power will always be greater than zero. Therefore, there are no solutions for x in this equation.
In conclusion, the original equation 8 * 2^(2x) - 2 * 2^(2x) = 0 has no solutions for x.



To solve the equation 8 * 2^(2x) - 2 * 2^(2x) = 0, you can factor out a common term:
2^(2x) * (8 - 2) = 0
Now, simplify further:
2^(2x) * 6 = 0
Now, you have:
2^(2x) = 0/6
Since anything divided by 6 is still 0, you have:
2^(2x) = 0
However, 2 to any power (positive or negative) is always greater than 0, so there are no real solutions to this equation. In other words, there is no value of x that will make the equation true.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili