
14 7/15 - 3 3/23 x 23/27 - 1 1/5 x 1/6


Ответы на вопрос

1. Розділимо числа і знайдемо результати кожного окремого виразу:
14 7/15 - 3 3/23 = 14 + 7/15 - 3 - 3/23
23/23 + 7/15 - 69/23 - 3/23
(23 + 7)/15 - (69 + 3)/23
30/15 - 72/23
2. Знайдемо спільний знаменник для обох дробів, це буде 23:
(30/15) * (23/23) - (72/23)
(690/23) - (72/23)
3. Віднімемо один вираз від іншого:
(690 - 72)/23 = 618/23
4. Тепер ми маємо:
618/23 * 23/27 - 1 1/5 * 1/6
5. Перемножимо перші два дроби:
(618/23) * (23/27) = (618/27)
6. Знайдемо 1 1/5 у десятковій формі, це 6/5:
(6/5) * (1/6) = 6/30 = 1/5
7. Тепер віднімемо один вираз від іншого:
(618/27) - (1/5)
8. Знайдемо спільний знаменник для обох дробів, це буде 27:
(618/27) - (1/5) * (27/27)
9. Віднімемо один вираз від іншого:
(618 - 27)/27 - (27/135)
10. Обчислимо чисельник:
591/27 - 27/135 = (591/27) - (27/5 * 27)
11. Знайдемо спільний знаменник для обох дробів, це буде 135:
(591/27 * 135/135) - (27/135)
12. Віднімемо один вираз від іншого:
(591 * 135 - 27 * 135)/135 = (79935 - 3645)/135 = 76290/135 = 566
Отже, результат виразу дорівнює 566.



To solve this expression, you should follow the order of operations (PEMDAS/BODMAS), which stands for Parentheses/Brackets, Exponents/Orders (i.e., powers and square roots, etc.), Multiplication and Division (left-to-right), and Addition and Subtraction (left-to-right). In this expression, there are no parentheses, exponents, or square roots, so you can proceed with multiplication and division from left to right and then perform addition and subtraction from left to right.
Here's the step-by-step calculation:
Start with the multiplication and division from left to right:
14 7/15 - 3 3/23 x 23/27 - 1 1/5 x 1/6 = 14 7/15 - 3 3/23 * 23/27 - 1 1/5 * 1/6
Multiply and divide:
= 14 7/15 - (3 3/23 * 23/27) - (1 1/5 * 1/6) = 14 7/15 - (3 3/23 * 23/27) - (1/5 * 1/6) [Converting mixed numbers to improper fractions]
Calculate the products:
= 14 7/15 - (70/23 * 23/27) - (1/5 * 1/6)
Simplify further:
= 14 7/15 - (70/27) - (1/30)
Now, subtract:
= (14 * 15 + 7)/15 - (70/27) - (1/30) [Converting mixed numbers to improper fractions] = (210 + 7)/15 - (70/27) - (1/30)
Find a common denominator:
= (217/15) - (70/27) - (1/30)
To subtract fractions, they need a common denominator. In this case, you can use the least common multiple (LCM) of 15, 27, and 30, which is 270.
Rewrite the fractions with the common denominator:
= (217/15) * (18/18) - (70/27) * (10/10) - (1/30) * (9/9)
Now, perform the subtraction:
= (217 * 18 - 70 * 10 - 1 * 9) / 270 = (3918 - 700 - 9) / 270 = (3209) / 270
Reduce the fraction if possible. The greatest common divisor (GCD) of 3209 and 270 is 1, so the fraction can't be further simplified:
= 3209/270
That's the simplified result of the expression: 3209/270. If you want to convert it to a mixed number, it would be approximately 11 179/270.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili