
Sin(2/3 π - 2arctg 4/3)


Ответы на вопрос

Пусть
Ответ:



To find the value of the expression sin(2/3 π - 2arctg 4/3), we can start by using trigonometric identities to simplify it.
- We know that arctan(x) is the inverse function of tangent, so we can write:
arctan(4/3) = θ
- Now, we can express the angle (2/3 π - 2arctg 4/3) in terms of θ:
2/3 π - 2θ
- We can use the following trigonometric identity for sine of the difference of two angles:
sin(A - B) = sin(A)cos(B) - cos(A)sin(B)
- Now, let's plug in our values:
sin(2/3 π - 2arctg 4/3) = sin(2/3 π)cos(2θ) - cos(2/3 π)sin(2θ)
- Since sin(2/3 π) = sin(π/3) = sqrt(3)/2 and cos(2/3 π) = cos(π/3) = 1/2:
sin(2/3 π - 2arctg 4/3) = (sqrt(3)/2)cos(2θ) - (1/2)sin(2θ)
- We also need to find cos(2θ) and sin(2θ). For that, we can use the double-angle trigonometric identities:
cos(2θ) = cos^2(θ) - sin^2(θ) sin(2θ) = 2sin(θ)cos(θ)
- We already have the value of θ from step 1:
θ = arctan(4/3)
- We can use the right triangle trigonometry to find sin(θ) and cos(θ):
Let's consider a right triangle with sides a = 4 and b = 3. The hypotenuse c can be found using the Pythagorean theorem: c^2 = a^2 + b^2. Thus, c^2 = 4^2 + 3^2 = 16 + 9 = 25. Taking the square root of both sides, c = √25 = 5.
Now, sin(θ) = b/c = 3/5, and cos(θ) = a/c = 4/5.
- Now, we can find cos(2θ) and sin(2θ):
cos(2θ) = cos^2(θ) - sin^2(θ) = (4/5)^2 - (3/5)^2 = 16/25 - 9/25 = 7/25 sin(2θ) = 2sin(θ)cos(θ) = 2 * (3/5) * (4/5) = 24/25
- Now, we can substitute these values back into our expression:
sin(2/3 π - 2arctg 4/3) = (sqrt(3)/2) * (7/25) - (1/2) * (24/25)
- Now, calculate the expression:
sin(2/3 π - 2arctg 4/3) ≈ (sqrt(3)/2) * (7/25) - (1/2) * (24/25) ≈ (7sqrt(3)/50) - (12/50) ≈ (7sqrt(3) - 12) / 50
So, the approximate value of sin(2/3 π - 2arctg 4/3) is (7sqrt(3) - 12) / 50.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili