
2х^2-7х+6 меньше или равно 0


Ответы на вопрос




To find the values of x for which the inequality is true, we can follow these steps:
Step 1: Find the roots of the quadratic equation . Step 2: Plot the graph of the quadratic equation. Step 3: Determine the regions where the graph is below or equal to zero.
Step 1: Find the roots of the quadratic equation : To find the roots, we can use the quadratic formula: , where is the standard form of a quadratic equation.
For our equation , we have , , and .
Using the quadratic formula:
So the roots of the equation are and .
Step 2: Plot the graph of the quadratic equation: The graph of the quadratic equation is a parabola that opens upwards because the coefficient of is positive (2 in this case). The roots we found in Step 1 ( and ) are the x-intercepts of the parabola.
Step 3: Determine the regions where the graph is below or equal to zero: To find the regions where the graph is less than or equal to zero, we need to identify the intervals on the x-axis where the graph is below or touches the x-axis.
Since the parabola opens upwards, the graph will be below the x-axis outside the interval between the roots and . In other words, the inequality is true for values in the interval .
So, the solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili