
Tg(α+7pi )-cos(2α+ pi/2), sinα=0,6 0< α < pi/2


Ответы на вопрос





To evaluate the expression Tg(α + 7π) - cos(2α + π/2) when sin(α) = 0.6 and 0 < α < π/2, we first need to find the values of tangent and cosine for the given angles.
Given: sin(α) = 0.6 0 < α < π/2
We can find cos(α) using the Pythagorean identity for sine and cosine:
sin^2(α) + cos^2(α) = 1
Since sin(α) = 0.6, we can calculate:
0.6^2 + cos^2(α) = 1 0.36 + cos^2(α) = 1 cos^2(α) = 1 - 0.36 cos^2(α) = 0.64 cos(α) = √(0.64) cos(α) = 0.8
Now that we have the values of sin(α) and cos(α), we can find tan(α):
tan(α) = sin(α) / cos(α) tan(α) = 0.6 / 0.8 tan(α) = 0.75
Now we can proceed to evaluate the given expression:
Tg(α + 7π) - cos(2α + π/2)
Since 7π is a multiple of 2π, adding or subtracting it from an angle doesn't change its trigonometric function values. Therefore:
tan(α + 7π) = tan(α) = 0.75
Next, we need to find cos(2α + π/2):
cos(2α + π/2) = cos(2α) * cos(π/2) - sin(2α) * sin(π/2)
Since cos(π/2) = 0 and sin(π/2) = 1, the expression simplifies to:
cos(2α + π/2) = -sin(2α)
Using the double-angle identity for sine:
sin(2α) = 2 * sin(α) * cos(α)
We already know sin(α) = 0.6 and cos(α) = 0.8, so:
sin(2α) = 2 * 0.6 * 0.8 sin(2α) = 0.96
Now, we can substitute the values into the original expression:
Tg(α + 7π) - cos(2α + π/2) = 0.75 - (-sin(2α)) = 0.75 - (-0.96)
Now, let's calculate:
Tg(α + 7π) - cos(2α + π/2) = 0.75 + 0.96 = 1.71
So, the final value of the expression is 1.71 when sin(α) = 0.6 and 0 < α < π/2.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili