Вопрос задан 29.07.2023 в 09:48. Предмет Алгебра. Спрашивает Мех Влада.

Решите уравнения: (x+6)^2–7x=(x–2)(x+2); (x–4)^2–7x=(x–3)(3+x); (x+6)^2–7x=(x–2)(x+2);

x^3–2x^2–9x+18=0.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сокольчик Дима.
!!!!!!!!!!!!!!!!!!!!!!!!

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения каждого уравнения, давайте последовательно выполним необходимые шаги:

  1. (x+6)^2 - 7x = (x-2)(x+2)

Сначала раскроем скобки: (x+6)(x+6) - 7x = x(x+2) - 2(x+2)

Теперь распишем квадраты: (x^2 + 12x + 36) - 7x = x^2 + 2x - 2x - 4

Упростим уравнение: x^2 + 12x + 36 - 7x = x^2 - 4

Теперь уберем общие члены с одной стороны: x^2 + 12x - 7x + 36 - 36 = x^2 - 4 - 36

Упростим дальше: x^2 + 5x = x^2 - 40

Теперь перенесем все на одну сторону: x^2 - x^2 + 5x = -40

x = -40

  1. (x-4)^2 - 7x = (x-3)(3+x)

Раскроем скобки: (x-4)(x-4) - 7x = x(x + 3) - 3(x + 3)

Распишем квадраты: (x^2 - 8x + 16) - 7x = x^2 + 3x - 3x - 9

Упростим уравнение: x^2 - 8x + 16 - 7x = x^2 - 9

Перенесем общие члены на одну сторону: x^2 - 8x + 7x + 16 - 16 = x^2 - x^2 - 9

Упростим дальше: -x = -9

x = 9

  1. (x+6)^2 - 7x = (x-2)(x+2)

Это уравнение совпадает с первым, которое мы уже решили. Поэтому ответ будет тот же:

x = -40

  1. x^3 - 2x^2 - 9x + 18 = 0

Чтобы решить это кубическое уравнение, нам нужно либо применить методы для кубических уравнений, либо воспользоваться численными методами. Найдем один из его корней методом подстановки:

Попробуем x = 1: 1^3 - 21^2 - 91 + 18 = 1 - 2 - 9 + 18 = 8

Попробуем x = 2: 2^3 - 22^2 - 92 + 18 = 8 - 8 - 18 + 18 = 0

Мы нашли корень x = 2. Теперь мы можем разделить исходное уравнение на (x - 2):

(x^3 - 2x^2 - 9x + 18) / (x - 2) = 0

Теперь мы получим квадратное уравнение:

x^2 + 2x - 9 = 0

Мы можем решить это квадратное уравнение, используя факторизацию или квадратное уравнение. Решим его методом факторизации:

(x + 3)(x - 3) = 0

Теперь у нас есть два дополнительных корня:

x + 3 = 0 => x = -3 x - 3 = 0 => x = 3

Итак, корни уравнения x^3 - 2x^2 - 9x + 18 = 0: x = 2, x = -3, x = 3

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос