
3 sinx cosx-2cos^2x=0


Ответы на вопрос





To solve the trigonometric equation 3sin(x)cos(x) - 2cos^2(x) = 0, we'll first try to simplify the expression and then find the values of x that satisfy the equation.
Step 1: Use trigonometric identities to simplify the equation. We know the double-angle identity for sine: sin(2x) = 2sin(x)cos(x).
Let's rewrite the equation using this identity: 3sin(x)cos(x) - 2cos^2(x) = 0 3sin(x)cos(x) - 2(1 - sin^2(x)) = 0 (Using the identity: cos^2(x) = 1 - sin^2(x)) 3sin(x)cos(x) - 2 + 2sin^2(x) = 0 3sin(x)cos(x) + 2sin^2(x) - 2 = 0
Step 2: Factor out common terms: sin(x)(3cos(x) + 2sin(x)) - 2 = 0
Step 3: Set each factor to zero and solve for x:
sin(x) = 0 If sin(x) = 0, then x can take values such as: x = 0° + k * 180°, where k is an integer.
3cos(x) + 2sin(x) = 0 To solve this, we can divide the entire equation by cos(x) (assuming cos(x) ≠ 0): 3 + 2tan(x) = 0 2tan(x) = -3 tan(x) = -3/2
Now, to find x, we need to find the angles whose tangent is -3/2. This can be done using the inverse tangent function (arctan or tan^(-1)) on a calculator:
x ≈ -56.31° + k * 180° or x ≈ 123.69° + k * 180°, where k is an integer.
So, the solutions to the equation are:
- x = 0° + k * 180°
- x ≈ -56.31° + k * 180°
- x ≈ 123.69° + k * 180°
where k is an integer. These are the values of x that satisfy the given equation.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili