
Log2(cos(2x)+ cos(x/2)) + log1/2(sin(x) + cos(x/2)) = 0


Ответы на вопрос

решение на фото==================




To solve the equation
log2(cos(2x) + cos(x/2)) + log1/2(sin(x) + cos(x/2)) = 0,
we'll use logarithmic properties to simplify it. First, let's recall some logarithmic properties:
- log_b(a) + log_b(c) = log_b(ac)
- log_b(a) - log_b(c) = log_b(a/c)
- log_b(a^n) = n * log_b(a)
Now, let's apply these properties to the given equation:
log2(cos(2x) + cos(x/2)) + log1/2(sin(x) + cos(x/2)) = 0
Using property 1 (combining the logarithms):
log2(cos(2x) + cos(x/2)) * 1/2 = 0
Now, to eliminate the logarithm, we can rewrite the equation as an exponential equation:
2^(log2(cos(2x) + cos(x/2)) * 1/2) = 2^0
Now, recall that 2^0 = 1, and (a^(m/n)) = (n√a)^m:
cos(2x) + cos(x/2) = 1
Now, let's solve for x:
cos(2x) + cos(x/2) - 1 = 0
We can use the trigonometric identity: cos(2x) = 2cos^2(x) - 1
2cos^2(x) - 1 + cos(x/2) - 1 = 0
Now, we have a quadratic equation in terms of cos(x):
2cos^2(x) + cos(x/2) - 2 = 0
To solve this quadratic equation, we can use the quadratic formula:
cos(x) = [-b ± √(b^2 - 4ac)] / 2a
In this case, a = 2, b = 1, and c = -2.
cos(x) = [-(1) ± √((1)^2 - 4(2)(-2))] / 2(2)
cos(x) = [-1 ± √(1 + 16)] / 4
cos(x) = [-1 ± √17] / 4
So we have two possible solutions for cos(x):
- cos(x) = (-1 + √17) / 4
- cos(x) = (-1 - √17) / 4
Now, to find the values of x, you can take the inverse cosine (cos^(-1)) of these solutions:
- x = cos^(-1)((-1 + √17) / 4)
- x = cos^(-1)((-1 - √17) / 4)
Keep in mind that these solutions are in terms of cosine, and you may need to use a calculator to approximate the values of x.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili