Вопрос задан 29.07.2023 в 00:59. Предмет Алгебра. Спрашивает Хороший Евгений.

Решить неравенство x^2+4/x^2-4>0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Семёнов Тимофей.

Решение внизу на фото


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality x2+4x24>0x^2 + \frac{4}{x^2} - 4 > 0, we can follow these steps:

Step 1: Find the critical points by setting the expression inside the inequality to zero and solving for xx. In this case, we set x2+4x24=0x^2 + \frac{4}{x^2} - 4 = 0:

x2+4x24=0x^2 + \frac{4}{x^2} - 4 = 0

Step 2: Solve for xx by making a substitution. Let t=x2t = x^2, then the equation becomes:

t2+4t4=0t^2 + \frac{4}{t} - 4 = 0

Step 3: Multiply the equation by tt to clear the fraction:

t34t+4=0t^3 - 4t + 4 = 0

Step 4: Solve for tt using numerical methods. Unfortunately, there is no general algebraic method to find the exact solutions to this cubic equation. However, we can use numerical methods or graphing techniques to approximate the solutions. By using numerical methods, we find:

t2.309t \approx 2.309

Step 5: Since t=x2t = x^2, the critical points are x=2.309x = \sqrt{2.309} and x=2.309x = -\sqrt{2.309}.

Step 6: Now, we can test the intervals determined by the critical points on the original inequality to find the solution:

Test x=0x = 0: 02+40240^2 + \frac{4}{0^2} - 4 is undefined (division by zero), so x=0x = 0 is not in the solution.

Test x=x = -\infty (a very large negative value): x2x^2 becomes very large, and 4x2\frac{4}{x^2} becomes very close to zero. So, x2+4x24x^2 + \frac{4}{x^2} - 4 will be negative for very large negative values of xx.

Test x=2.309ϵx = -\sqrt{2.309} - \epsilon (a value slightly less than 2.309-\sqrt{2.309}): x2x^2 will be slightly larger than 2.3092.309, and 4x2\frac{4}{x^2} will be slightly positive but close to zero. So, x2+4x24x^2 + \frac{4}{x^2} - 4 will be negative for x<2.309x < -\sqrt{2.309}.

Test x=2.309+ϵx = -\sqrt{2.309} + \epsilon (a value slightly greater than 2.309-\sqrt{2.309}): x2x^2 will be slightly less than 2.3092.309, and 4x2\frac{4}{x^2} will be slightly positive but close to zero. So, x2+4x24x^2 + \frac{4}{x^2} - 4 will be positive for x>2.309x > -\sqrt{2.309}.

Test x=2.309ϵx = \sqrt{2.309} - \epsilon (a value slightly less than 2.309\sqrt{2.309}): Same reasoning as above, x2+4x24x^2 + \frac{4}{x^2} - 4 will be positive for x<2.309x < \sqrt{2.309}

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос