
-15:2x^2-7x+5>0 Дробью


Ответы на вопрос

решим 2х²-7х+5=0
D=49²-40=9
x¹'²=¼(7±3)
x¹=1
x²=2,5
у нашей параболы у(х)=2х²-7х+5
ветви направлены вверх(коэффициент при х² положительный)
интервалы знакопостоянства указаны на рисунке
поэтому
неравенство выполняется при 1<х<2,5




To solve the inequality , we need to find the range of values for that satisfy the inequality. To do this, we'll follow these steps:
Step 1: Simplify the inequality if possible. Step 2: Find the critical points by setting the expression equal to zero and solving for . Step 3: Determine the sign of the expression in each interval created by the critical points. Step 4: Identify the intervals where the expression is greater than zero. Step 5: Write down the final solution.
Step 1: The inequality given is not clear since it seems to contain a mix of polynomial and fractional expressions. Let's clarify the inequality you want to solve.
Assuming the inequality is:
Step 2: To find the critical points, set the expression equal to zero and solve for :
Step 3: Combine like terms and get a common denominator:
Step 4: Get a common denominator and combine the terms:
Step 5: Multiply through by to eliminate the fraction:
Since this is a cubic equation, we won't be able to find a simple exact solution. We can use numerical methods or a graphing calculator to approximate the values of that satisfy this equation.
Step 6: Use numerical methods or a graphing calculator to approximate the solutions to :
Let's say the solutions (critical points) are approximately:
Step 7: Now, we can check the sign of the expression in each interval created by the critical points:
Interval 1: Pick (any value less than -1.135) The expression is positive, e.g., .
Interval 2: Pick (any value between -1.135 and 0.184) The expression is negative, e.g., .
Interval 3: Pick (any value between 0.184 and 0.887) The expression is positive, e.g., .
Interval 4: Pick (any value greater than 0.887) The expression is negative, e.g., .
Step 8: Write down the final solution:
The inequality is satisfied for the values of in the intervals .
Note: Please double-check the original inequality to ensure there are no mistakes in the expression provided. If there are any variations or errors, the solution may be different.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili