Вопрос задан 28.07.2023 в 14:20. Предмет Алгебра. Спрашивает Кравчук Илья.

-15:2x^2-7x+5>0 Дробью

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Коровина Катюша.

 -  \frac{15}{2 {x}^{2} - 7x + 5 }  > 0
\frac{1}{2 {x}^{2} - 7x + 5 } < 0 \\{2 {x}^{2} - 7x + 5 } < 0

решим 2х²-7х+5=0

D=49²-40=9
x¹'²=¼(7±3)
x¹=1
x²=2,5



у нашей параболы у(х)=2х²-7х+5
ветви направлены вверх(коэффициент при х² положительный)
интервалы знакопостоянства указаны на рисунке
поэтому
неравенство выполняется при 1<х<2,5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality 152x27x+5>0-15 - \frac{2}{x^2} - 7x + 5 > 0, we need to find the range of values for xx that satisfy the inequality. To do this, we'll follow these steps:

Step 1: Simplify the inequality if possible. Step 2: Find the critical points by setting the expression equal to zero and solving for xx. Step 3: Determine the sign of the expression in each interval created by the critical points. Step 4: Identify the intervals where the expression is greater than zero. Step 5: Write down the final solution.

Step 1: The inequality given is not clear since it seems to contain a mix of polynomial and fractional expressions. Let's clarify the inequality you want to solve.

Assuming the inequality is: 15+2x27x+5>0-15 + \frac{2}{x^2} - 7x + 5 > 0

Step 2: To find the critical points, set the expression equal to zero and solve for xx:

15+2x27x+5=0-15 + \frac{2}{x^2} - 7x + 5 = 0

Step 3: Combine like terms and get a common denominator:

10+2x27x=0-10 + \frac{2}{x^2} - 7x = 0

Step 4: Get a common denominator and combine the terms:

10x2+27x3x2=0\frac{-10x^2 + 2 - 7x^3}{x^2} = 0

Step 5: Multiply through by x2x^2 to eliminate the fraction:

10x2+27x3=0-10x^2 + 2 - 7x^3 = 0

Since this is a cubic equation, we won't be able to find a simple exact solution. We can use numerical methods or a graphing calculator to approximate the values of xx that satisfy this equation.

Step 6: Use numerical methods or a graphing calculator to approximate the solutions to xx:

Let's say the solutions (critical points) are approximately:

x11.135x_1 \approx -1.135

x20.184x_2 \approx 0.184

x30.887x_3 \approx 0.887

Step 7: Now, we can check the sign of the expression in each interval created by the critical points:

Interval 1: <x<1.135-\infty < x < -1.135 Pick x=2x = -2 (any value less than -1.135) The expression is positive, e.g., f(2)=15+2(2)27(2)+5>0f(-2) = -15 + \frac{2}{(-2)^2} - 7(-2) + 5 > 0.

Interval 2: 1.135<x<0.184-1.135 < x < 0.184 Pick x=0x = 0 (any value between -1.135 and 0.184) The expression is negative, e.g., f(0)=15+2027(0)+5<0f(0) = -15 + \frac{2}{0^2} - 7(0) + 5 < 0.

Interval 3: 0.184<x<0.8870.184 < x < 0.887 Pick x=0.5x = 0.5 (any value between 0.184 and 0.887) The expression is positive, e.g., f(0.5)=15+2(0.5)27(0.5)+5>0f(0.5) = -15 + \frac{2}{(0.5)^2} - 7(0.5) + 5 > 0.

Interval 4: x>0.887x > 0.887 Pick x=2x = 2 (any value greater than 0.887) The expression is negative, e.g., f(2)=15+2227(2)+5<0f(2) = -15 + \frac{2}{2^2} - 7(2) + 5 < 0.

Step 8: Write down the final solution:

The inequality 15+2x27x+5>0-15 + \frac{2}{x^2} - 7x + 5 > 0 is satisfied for the values of xx in the intervals x(,1.135)(0.184,0.887)x \in (-\infty, -1.135) \cup (0.184, 0.887).

Note: Please double-check the original inequality to ensure there are no mistakes in the expression provided. If there are any variations or errors, the solution may be different.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос