Вопрос задан 27.07.2023 в 22:18. Предмет Алгебра. Спрашивает Ургачёв Данил.

Решите,пожалуйста: 8a^3+100a/a^3+125 - 4a^2/a^2-5a+25 Спасибо!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кравчук Даша.
Решение задания смотри на фотографии

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения данного выражения, сначала приведем все дроби к общему знаменателю и затем объединим числители. Затем проведем алгебраические операции. В этом случае, общим знаменателем будет a3+125a^3+125.

Выполним шаги поэтапно:

  1. Упростим 8a3+100aa3+125\frac{8a^3 + 100a}{a^3 + 125}: 8a3+100aa3+125=4a(2a2+25)a3+125\frac{8a^3 + 100a}{a^3 + 125} = \frac{4a(2a^2 + 25)}{a^3 + 125}

  2. Упростим 4a2a25a+25\frac{4a^2}{a^2 - 5a + 25}: Этот шаг можно выполнить, применив разложение на множители знаменателя. a25a+25a^2 - 5a + 25 не имеет действительных корней, поэтому знаменатель не разложится на множители. Оставим его в таком виде.

Теперь объединим числители: 4a(2a2+25)a3+1254a2a25a+25\frac{4a(2a^2 + 25)}{a^3 + 125} - \frac{4a^2}{a^2 - 5a + 25}

Чтобы вычесть дроби с разными знаменателями, нужно привести их к общему знаменателю. В данном случае, общим знаменателем будет a3+125a^3 + 125(потому что a25a+25a^2 - 5a + 25 не разлагается на множители, и у нас нет другого общего множителя).

  1. Приведем обе дроби к общему знаменателю a3+125a^3 + 125: 4a(2a2+25)a3+1254a2a25a+25×a3+125a3+125\frac{4a(2a^2 + 25)}{a^3 + 125} - \frac{4a^2}{a^2 - 5a + 25} \times \frac{a^3 + 125}{a^3 + 125} =4a(2a2+25)a3+1254a2(a3+125)(a25a+25)(a3+125)= \frac{4a(2a^2 + 25)}{a^3 + 125} - \frac{4a^2(a^3 + 125)}{(a^2 - 5a + 25)(a^3 + 125)}

Теперь, чтобы сложить дроби, необходимо их привести к общему знаменателю. В этом случае общим знаменателем будет (a25a+25)(a3+125)(a^2 - 5a + 25)(a^3 + 125).

  1. Сложим дроби: 4a(2a2+25)4a2(a3+125)(a25a+25)(a3+125)\frac{4a(2a^2 + 25) - 4a^2(a^3 + 125)}{(a^2 - 5a + 25)(a^3 + 125)}

  2. Выполним алгебраические операции в числителе: =8a3+100a4a5500a2(a25a+25)(a3+125)= \frac{8a^3 + 100a - 4a^5 - 500a^2}{(a^2 - 5a + 25)(a^3 + 125)}

  3. Теперь упростим числитель, сгруппировав подобные члены: =4a5+8a3500a2+100a(a25a+25)(a3+125)= \frac{-4a^5 + 8a^3 - 500a^2 + 100a}{(a^2 - 5a + 25)(a^3 + 125)}

Таким образом, окончательный ответ: 4a5+8a3500a2+100a(a25a+25)(a3+125)\frac{-4a^5 + 8a^3 - 500a^2 + 100a}{(a^2 - 5a + 25)(a^3 + 125)}

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос