
Решите: cos^2x=1/2(1-cosx)


Ответы на вопрос




To solve the equation cos^2x = 1/2(1 - cosx), we'll first rewrite it to make it easier to work with. Let's move all terms to one side of the equation:
cos^2x - 1/2(1 - cosx) = 0
Now, let's simplify the equation:
cos^2x - 1/2 + 1/2 * cosx = 0
To proceed, let's make a substitution to simplify further. Let u = cos(x):
u^2 - 1/2 + 1/2 * u = 0
Now, we have a quadratic equation in terms of u. To solve it, we'll set the equation equal to zero and factor it (if possible):
u^2 + 1/2 * u - 1/2 = 0
To factor the equation, we look for two numbers that multiply to -1/2 and add up to 1/2. The numbers are 1 and -1/2:
(u + 1)(u - 1/2) = 0
Now, we can solve for u:
u + 1 = 0 or u - 1/2 = 0
If u + 1 = 0, then u = -1 If u - 1/2 = 0, then u = 1/2
Now, we need to convert back from u to x:
If u = cos(x) = -1: x = arccos(-1) = π (plus any integer multiple of 2π since cos has a period of 2π)
If u = cos(x) = 1/2: x = arccos(1/2) = π/3 (plus any integer multiple of 2π or 4π since cos has a period of 2π)
So, the solutions to the equation cos^2x = 1/2(1 - cosx) are x = π + 2nπ and x = π/3 + 2mπ or 4mπ, where n and m are integers.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili