
(x + 2)² + 2x = 5x (x - 2) плиз


Ответы на вопрос







To solve the equation "(x + 2)² + 2x = 5x (x - 2)," we'll first expand and simplify both sides of the equation and then try to find the value(s) of x that satisfy the equation.
Step 1: Expand and simplify the equation. (x + 2)² + 2x = 5x (x - 2)
First, expand (x + 2)²: (x + 2)² = (x + 2)(x + 2) = x(x) + x(2) + 2(x) + 2(2) = x² + 2x + 2x + 4 = x² + 4x + 4
Now, substitute the expansion back into the equation: x² + 4x + 4 + 2x = 5x (x - 2)
Step 2: Bring all terms to one side of the equation: x² + 4x + 4 + 2x - 5x(x - 2) = 0
Step 3: Simplify the equation further: x² + 4x + 4 + 2x - 5x² + 10x = 0
Step 4: Combine like terms: -4x² + 16x + 4 = 0
Step 5: Now, we have a quadratic equation in standard form (ax² + bx + c = 0), where a = -4, b = 16, and c = 4. To find the values of x, we can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / 2a
Substitute the values: x = (-(16) ± √((16)² - 4(-4)(4))) / 2(-4) x = (-16 ± √(256 + 64)) / (-8) x = (-16 ± √320) / (-8) x = (-16 ± √(16 * 20)) / (-8) x = (-16 ± 4√5) / (-8)
Now, split it into two separate solutions:
- x = (-16 + 4√5) / (-8)
- x = (-16 - 4√5) / (-8)
Step 6: Simplify the solutions further:
x = (16 - 4√5) / 8 (Divide both numerator and denominator by 4) x = (4 - √5) / 2
x = (16 + 4√5) / 8 (Divide both numerator and denominator by 4) x = (4 + √5) / 2
So, the solutions to the equation are: x = (4 - √5) / 2 x = (4 + √5) / 2


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili