
Вопрос задан 24.07.2023 в 08:28.
Предмет Алгебра.
Спрашивает Сычев Иван.
2^1-x - 2^3+x -15=0 Отдам 50 баллов 1-х и 3+х это степень


Ответы на вопрос

Отвечает Махортов Пашенька.
Дралнашнашнашнашнадощр




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения уравнения 2^(1-x) - 2^(3+x) - 15 = 0, давайте упростим его.
Заметим, что 1-x и 3+x являются степенями числа 2. Это значит, что уравнение можно переписать следующим образом:
2^1 * 2^(-x) - 2^3 * 2^x - 15 = 0
Теперь объединим слагаемые:
2^(1-x) - 2^(3+x) - 15 = 0
2^(1-x - 3 - x) - 15 = 0
2^(1-4x) - 15 = 0
Теперь выразим 2^(1-4x):
2^(1-4x) = 15
Чтобы избавиться от степени, применим логарифм по основанию 2 к обеим частям уравнения:
log2(2^(1-4x)) = log2(15)
1-4x = log2(15)
Теперь выразим x:
4x = 1 - log2(15)
x = (1 - log2(15)) / 4
Посчитаем значение x:
x ≈ (1 - 3.9068905956085187) / 4
x ≈ (-2.9068905956085187) / 4
x ≈ -0.7267226489021297
Таким образом, значение x приближенно равно -0.7267.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili