E(Y) (x+10)/x^2+2x+20 как находится(пожалуйста подробно)
Ответы на вопрос



To find the expected value E(Y) of the random variable Y, which is defined as (x + 10)/(x^2 + 2x + 20), we need to calculate the expected value over all possible values of x.
The expected value of a continuous random variable Y with probability density function f(x) is given by the integral of Y*f(x) over the entire range of x.
In this case, Y = (x + 10)/(x^2 + 2x + 20), and we don't have information about the probability density function f(x) of x. If you have additional information about the distribution of x, we can use that to proceed. But if not, we can still evaluate the expected value without the specific distribution.
To calculate E(Y), we will use the Law of the Unconscious Statistician (LOTUS), which states that the expected value of a function g(X) of a random variable X is given by integrating g(X) times the probability density function of X over the range of X.
Mathematically, the formula for E(Y) is:
E(Y) = ∫ [ (x + 10)/(x^2 + 2x + 20) ] * f(x) dx
Since we don't have the exact probability density function f(x), we can't calculate the expected value directly.
If you have additional information about the distribution of x or any constraints on the values of x, please provide that information so that I can assist you further.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
