
Y=x(квадрат) x-3y=-3


Ответы на вопрос

x-3+y(x-3)=0
y(x-3)=3-x
y=(3-x):(x-3)
(2) x^2 + ((3-x):(x-3))^2=10
(x^2(x-3)^2+(3-x)^2):(x-3)^2=0
((x^2-1)(x-3)^2):(x-3)^2 =0
x^2-1=0
x^2=1
x=-1, x=1
y^2=10-1
y^2=9
y= -3, y=3
Ответ - (-1;3) (-1;-3) (1;3) (1;-3)



To solve the system of equations, you can use the method of substitution or elimination. Let's use the substitution method.
Given the system of equations:
Step 1: Substitute the value of from the first equation into the second equation:
Step 2: Simplify and rearrange the equation to a quadratic equation form:
Now, we have a quadratic equation in terms of . To solve this quadratic equation, we can use the quadratic formula:
The quadratic formula is given by:
where , , and .
Step 3: Calculate the discriminant ():
Since the discriminant is negative (), the quadratic equation has no real solutions. This means that the system of equations has no real solutions as well. Geometrically, this means that the two graphs (a parabola and a straight line) do not intersect, so there is no common point that satisfies both equations simultaneously.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili