Вопрос задан 21.07.2023 в 11:49. Предмет Алгебра. Спрашивает Shadrin Nikita.

Составьте уравнение, корни которого на 2 меньше корней уравнения Помогите, умоляю​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тупиков Сергей.

!!!!!!!!!!!!!!!!!!!!!!!!!!


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам составить такое уравнение. Предположим, что у нас есть исходное уравнение с корнями "а" и "b", и мы хотим составить новое уравнение, корни которого на 2 меньше корней исходного уравнения.

Исходное уравнение: f(x)=0f(x) = 0

Корни исходного уравнения: x=ax = a x=bx = b

Мы хотим составить новое уравнение с корнями "a - 2" и "b - 2". Чтобы сделать это, мы должны построить уравнение, в котором эти значения будут корнями.

Уравнение с корнями "a - 2" и "b - 2": g(x)=0g(x) = 0

Корни нового уравнения: x=a2x = a - 2 x=b2x = b - 2

Теперь, чтобы составить уравнение, нам нужно выразить это уравнение в форме многочлена, используя корни:

g(x)=(x(a2))(x(b2))=0g(x) = (x - (a - 2))(x - (b - 2)) = 0

Раскроем скобки:

g(x)=(xa+2)(xb+2)=0g(x) = (x - a + 2)(x - b + 2) = 0

Таким образом, уравнение с корнями "a - 2" и "b - 2" будет:

(xa+2)(xb+2)=0(x - a + 2)(x - b + 2) = 0

Это уравнение удовлетворяет условию, и его корнями будут значения "a - 2" и "b - 2".

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос