
Решите пожалуйста 1.Решите уравнения методом замены1.1 3(x^2+4/x^2)+2(x+2/x)=211.2
2(x^2+9/x^2)-3(x-3/x)=142. Для каждого значения параметра а решите уравнение2.1 ((x^2-(2+3a)x+6a))/(x^2-9)2.2 ((x^2+(1+2a)x+2a))/(x^2-4)

Ответы на вопрос

Ответ:
Объяснение:
1) 3(x^2+4/x^2)+2(x+2/x)=21 2)
x^3+4x^2-21x=0
x(x^2+4x-21)=0
x(x+7)(x-3)=0
x1=0
x2=-7
x3=3



1.1 To solve the equation using the method of substitution, we let u = x + 1/x. Then, u^2 = (x + 1/x)^2 = x^2 + 2 + 1/x^2, and u^2 - 2 = x^2 + 1/x^2.
Now, the equation becomes:
3(u^2 - 2) + 2u = 211.
Simplify the equation:
3u^2 + 2u - 217 = 0.
Now, we have a quadratic equation in terms of u. We can solve it using factoring, completing the square, or the quadratic formula. Let's use the quadratic formula:
u = (-b ± √(b^2 - 4ac)) / 2a,
where a = 3, b = 2, and c = -217.
u = (-2 ± √(2^2 - 4 * 3 * (-217))) / 2 * 3 u = (-2 ± √(4 + 2604)) / 6 u = (-2 ± √2608) / 6 u = (-2 ± 51.07) / 6.
Now we have two possible values for u:
u₁ = (51.07 - 2) / 6 ≈ 8.512, u₂ = (-51.07 - 2) / 6 ≈ -9.179.
Now, we need to find the corresponding values of x:
For u₁:
x + 1/x = 8.512.
We solve this quadratic equation to find x:
x^2 + 1 = 8.512x x^2 - 8.512x + 1 = 0.
Using the quadratic formula:
x = (8.512 ± √(8.512^2 - 4 * 1 * 1)) / 2 * 1 x = (8.512 ± √(72.310144 - 4)) / 2 x = (8.512 ± √68.310144) / 2 x ≈ (8.512 ± 8.273) / 2.
So the two solutions for x are:
x₁ ≈ (8.512 + 8.273) / 2 ≈ 8.393, x₂ ≈ (8.512 - 8.273) / 2 ≈ 0.120.
For u₂:
x + 1/x = -9.179.
We solve this quadratic equation to find x:
x^2 + 1 = -9.179x x^2 + 9.179x + 1 = 0.
Using the quadratic formula:
x = (-9.179 ± √(9.179^2 - 4 * 1 * 1)) / 2 * 1 x = (-9.179 ± √84.210241 - 4) / 2 x = (-9.179 ± √80.210241) / 2 x ≈ (-9.179 ± 8.955) / 2.
So the two solutions for x are:
x₃ ≈ (-9.179 + 8.955) / 2 ≈ -0.112, x₄ ≈ (-9.179 - 8.955) / 2 ≈ -8.567.
Therefore, the solutions to the original equation are:
x₁ ≈ 8.393, x₂ ≈ 0.120, x₃ ≈ -0.112, x₄ ≈ -8.567.
1.2 To solve the equation using the method of substitution, let u = x + 1/x. Then, u^2 = (x + 1/x)^2 = x^2 + 2 + 1/x^2, and u^2 - 2 = x^2 + 1/x^2.
Now, the equation becomes:
2(u^2 - 2) - 3u = 14.
Simplify the equation:
2u^2 - 4 - 3u = 14.
Move all terms to one side:
2u^2 - 3u - 18 = 0.
Now, we have a quadratic equation in terms of u. We can solve it using factoring, completing the square, or the quadratic formula. Let's use the quadratic formula:
u = (-b ± √(b^2 - 4ac)) / 2a,
where a = 2, b = -3, and c = -18.
u = (3 ± √((-3)^2 - 4 * 2 * (-18))) / 2 * 2 u = (3 ± √(9 + 144)) / 4 u = (3 ± √153) / 4.
Now we have two possible values for u:
u₁ = (3 + √153) / 4 ≈ 3.932, u₂ = (3 - √153) / 4 ≈ -2.432.
Now, we need to find the corresponding values of x:
For u₁:
x + 1/x = 3.932.
We solve this quadratic equation to find x:
x^2 + 1 = 3.932x x^2 - 3.932x + 1 = 0.
Using the quadratic formula:
x = (3.932 ± √(3.932^2 - 4 * 1 * 1)) / 2 * 1 x = (3.932 ± √(15.494624 - 4)) / 2 x = (3.932 ± √11.494624) / 2 x ≈ (3.932 ± 3.39) / 2.
So the two solutions for x are:
x₁ ≈ (3.932 + 3.39) / 2 ≈ 3.661, x₂ ≈ (3.932 - 3.39) / 2 ≈ 0.271.
For u₂:
x + 1/x = -2.432.
We solve this quadratic equation to find x:
x^2 + 1 = -2.432x x^2 + 2.432x + 1 = 0.
Using the quadratic formula:
x = (-2.432 ± √(2.432^2 - 4 * 1 * 1)) / 2 * 1 x = (-2.432 ± √5.917824 - 4) / 2 x = (-2.432 ± √1.917824) / 2 x ≈ (-2.432 ± 1.384) / 2.
So the two solutions for x are:
x₃ ≈ (-2.432 + 1.384) / 2 ≈ -0.524, x₄ ≈ (-2.432 - 1.384) / 2 ≈ -1.908.
Therefore, the solutions to the original equation are:
x₁ ≈ 3.661, x₂ ≈ 0.271


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili