Вопрос задан 20.07.2023 в 03:13. Предмет Алгебра. Спрашивает Дангуров Ростислав.

Sin(x+3pi4)=0 Ответ на решение

0 1
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вороны Белые.

Ответ: - 3π/4 + πk, где k - целые числа.

Объяснение:

\sin\left(x+\frac{3\pi}{4}\right)=0\\ \\ x+\frac{3\pi}{4}=\pi k,k \in Z\\ \\ x=-\frac{3\pi}{4}+\pi k,k \in Z

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения уравнения sin(x + 3π/4) = 0, нужно найти все значения переменной x, которые удовлетворяют данному уравнению.

Используем свойства синуса, зная, что sin(0) = 0. Также знаем, что sin(π) = 0. Находим x из уравнения:

x + 3π/4 = 0 или x + 3π/4 = π

Для первого уравнения решаем относительно x:

x = -3π/4

Для второго уравнения также решаем относительно x:

x = π - 3π/4 x = π/4

Таким образом, уравнение sin(x + 3π/4) = 0 имеет два решения:

x = -3π/4 и x = π/4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос