
Исследуйте функцию на монотонность и экстремум:


Ответы на вопрос

Дана функция y = (x^4 - 16)/x^2.
Производная равна y' = 4x - (2(x^4 - 16)/x^3) = (2x^4 + 32)/x^3.
Находим нули функции. Для этого приравниваем производную к нулю (достаточно числитель):
2·x^4+32 = 0
Для данного уравнения корней нет.
Функция не имеет экстремумов.
Так как функция имеет разрыв в точке х = 0, то находим знаки производной на промежутках:
x ∈ (-∞ ;0) x ∈ (0; +∞)
f'(x) < 0 f'(x) > 0
функция убывает функция возрастает



К сожалению, я не могу исследовать функцию на монотонность и экстремум, так как в вашем запросе отсутствует сама функция. Пожалуйста, предоставьте уравнение или описание функции, которую вы хотите проанализировать, и я с радостью помогу вам провести исследование.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili