Вопрос задан 17.07.2023 в 07:57. Предмет Алгебра. Спрашивает Жиров Артём.

СРОЧНО Почему х²-х+1 ≠0 НЕЛЬЗЯ брать конкретные числа

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Насыров Тимур.
Например, перекинуть любое звено за знак равно(x^2-x=-1) или x^2+1=x
Уравнение решения не имеет составлено не корректно
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Хорошо, давайте разберем этот вопрос. Формула, которую вы представили, это квадратное уравнение: х² - х + 1 = 0. Для того чтобы показать, что оно не имеет решений, нам необходимо проанализировать его дискриминант.

Общий вид квадратного уравнения: ax² + bx + c = 0, где a, b и c - коэффициенты, причем а ≠ 0.

Дискриминант вычисляется по формуле D = b² - 4ac.

Если D > 0, уравнение имеет два различных корня. Если D = 0, уравнение имеет один корень (корень кратности 2). Если D < 0, уравнение не имеет действительных корней.

Теперь вернемся к вашему уравнению: х² - х + 1 = 0.

Здесь a = 1, b = -1 и c = 1. Вычислим дискриминант:

D = (-1)² - 4 * 1 * 1 = 1 - 4 = -3.

Поскольку дискриминант D меньше нуля (D < 0), это означает, что уравнение не имеет действительных корней. Это можно объяснить также геометрически: уравнение представляет собой параболу, которая никогда не пересекает ось X.

Таким образом, мы показали, что х² - х + 1 ≠ 0 не имеет решений, но это было доказано общим способом, без использования конкретных чисел. Это свойство верно для всех действительных значений х.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос