
9х-7/3х-2 - 4х-5/2х-3 = 1


Ответы на вопрос

Решение на фото
. . . . . . . . . .




To solve the equation, we need to find the value of "x" that makes the equation true. Let's first simplify the equation by combining like terms and getting rid of the fractions. Then we can solve for "x".
Given equation:
(9x - 7) / (3x - 2) - (4x - 5) / (2x - 3) = 1
Step 1: Find a common denominator for both fractions, which is (3x - 2)(2x - 3):
[(9x - 7)(2x - 3) - (4x - 5)(3x - 2)] / [(3x - 2)(2x - 3)] = 1
Step 2: Expand the numerator:
(18x^2 - 27x - 14x + 21) - (12x^2 - 8x - 15x + 10) = (18x^2 - 27x - 14x + 21) - (12x^2 - 23x + 10) = 1
Step 3: Combine like terms:
18x^2 - 27x - 14x + 21 - 12x^2 + 23x - 10 = 1
Step 4: Continue combining like terms:
(18x^2 - 12x^2) + (-27x + 23x) + (-14x) + (21 - 10) = 1
6x^2 - 4x + 11 = 1
Step 5: Move all terms to one side of the equation to set it to zero:
6x^2 - 4x + 11 - 1 = 0
6x^2 - 4x + 10 = 0
Step 6: Divide the entire equation by 2 to simplify:
3x^2 - 2x + 5 = 0
Now, to find the values of "x", we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / 2a
where a = 3, b = -2, and c = 5.
Step 7: Plug in the values and calculate "x":
x = (2 ± √((-2)^2 - 4 * 3 * 5)) / 2 * 3
x = (2 ± √(4 - 60)) / 6
x = (2 ± √(-56)) / 6
As the value under the square root is negative, the solutions are complex numbers. The solutions for "x" are:
x = (2 + √56i) / 6 and x = (2 - √56i) / 6
Note: "i" is the imaginary unit, where i^2 = -1.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili