
Розв'яжіть нерівність методом інтервалів 1) (х-1)(х+3)<0 2) (х+5)(2х-8)> або=0


Ответы на вопрос

Ответ:
решение смотри на фотографии
Объяснение:




- (х-1)(х+3) < 0:
To solve this inequality using the interval method, we need to find the intervals where the expression (x-1)(x+3) is less than zero (negative).
Step 1: Find the critical points by setting the expression equal to zero: (x - 1)(x + 3) = 0
Setting each factor equal to zero, we have: x - 1 = 0 => x = 1 x + 3 = 0 => x = -3
Step 2: Plot the critical points on a number line:
diff-3 1
|-----|-----|
Step 3: Pick a test point from each interval:
For the interval (-∞, -3), we can choose x = -4. For the interval (-3, 1), we can choose x = 0. For the interval (1, +∞), we can choose x = 2.
Step 4: Evaluate the expression (x - 1)(x + 3) using the test points:
For x = -4: (-4 - 1)(-4 + 3) = (-5)(-1) = 5 > 0 For x = 0: (0 - 1)(0 + 3) = (-1)(3) = -3 < 0 For x = 2: (2 - 1)(2 + 3) = (1)(5) = 5 > 0
Step 5: Determine the intervals where the expression is less than zero:
The expression (x - 1)(x + 3) is negative (less than zero) in the interval (-3, 1).
Therefore, the solution to the inequality (x - 1)(x + 3) < 0 is: -3 < x < 1.
- (х+5)(2х-8) > 0 or equal to zero:
To solve this inequality using the interval method, we need to find the intervals where the expression (x + 5)(2x - 8) is greater than zero (positive) or equal to zero.
Step 1: Find the critical points by setting the expression equal to zero: (x + 5)(2x - 8) = 0
Setting each factor equal to zero, we have: x + 5 = 0 => x = -5 2x - 8 = 0 => x = 4
Step 2: Plot the critical points on a number line:
diff-5 4
|-----|-----|
Step 3: Pick a test point from each interval:
For the interval (-∞, -5), we can choose x = -6. For the interval (-5, 4), we can choose x = 0. For the interval (4, +∞), we can choose x = 5.
Step 4: Evaluate the expression (x + 5)(2x - 8) using the test points:
For x = -6: (-6 + 5)(2(-6) - 8) = (-1)(-20) = 20 > 0 For x = 0: (0 + 5)(2(0) - 8) = (5)(-8) = -40 < 0 For x = 5: (5 + 5)(2(5) - 8) = (10)(2) = 20 > 0
Step 5: Determine the intervals where the expression is greater than zero:
The expression (x + 5)(2x - 8) is positive (greater than zero) in the intervals (-∞, -5) and (4, +∞). It is also equal to zero at x = 4.
Therefore, the solution to the inequality (x + 5)(2x - 8) > 0 or equal to zero is: x < -5 or x > 4.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili