Вопрос задан 16.07.2023 в 16:45. Предмет Алгебра. Спрашивает Дерябина Мария.

На какой тупой угол нужно повернуть точку (1;0) относительно начала координат против часовой

стрелки,чтобы получить точку P(-корень из 3/2;1/2)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бекмаганбетов Рамазан.

Ответ:

150°

Объяснение:

берём абсциссу как косинус, а ординат как синус

определим четверть смотря на знаки

у нас (-;+) значит вторая четверть

теперь находим угол

cosx=-√3/2

x=150°

sinx=1/2 вторая четверть, значит

х=150°

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи можно воспользоваться формулами для преобразования координат точки при повороте на угол θ против часовой стрелки вокруг начала координат.

Пусть точка P(x, y) получается из точки (1, 0) при повороте на угол θ. Тогда применяя формулы для поворота точки на угол θ, получаем:

x = cos(θ) y = sin(θ)

Из условия задачи известны координаты точки P(-√3/2, 1/2), поэтому:

x = -√3/2 y = 1/2

Сравнивая полученные значения, можно прийти к следующему уравнению:

-√3/2 = cos(θ) 1/2 = sin(θ)

Из первого уравнения можно выразить cos(θ):

cos(θ) = -√3/2

Из второго уравнения можно выразить sin(θ):

sin(θ) = 1/2

Теперь необходимо найти угол θ, для которого выполняются эти равенства. Отметим, что значения cos(θ) и sin(θ) соответствуют углу 30 градусов (или π/6 радиан), так как cos(π/6) = √3/2 и sin(π/6) = 1/2.

Таким образом, точку (1, 0) нужно повернуть на угол 30 градусов (или π/6 радиан) против часовой стрелки, чтобы получить точку P(-√3/2, 1/2).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос