
А) sinx >1/2 Cosx<0 Sinx>0 Cosx<-1/2


Ответы на вопрос

Ответ:
Объяснение:1)sinx>1/2 ⇔π/6+2πn<x<5π/6+2πn, n∈z
ответ:(π/6+2πn;5π/6+2πn),n∈z
2)cosx<0 ⇔π/2+2πn<x<3π/2+2πn,n∈z ответ:(π/2+2πn;3π/2+2πn),n∈z
3)sinx>0⇔2πn<x<π+2πn,n∈z ответ; (2πn;π+2πn),n∈z
4)cosx<-1/2, 2π/3+2πn<x<4π/3+2πn,n∈z



To solve the system of inequalities:
A) sin(x) > 1/2 cos(x) < 0
First, let's analyze sin(x) > 1/2. This means that the value of sin(x) is greater than 1/2.
In the unit circle, sin(x) represents the y-coordinate of a point on the circle at angle x. For sin(x) > 1/2, we need to find the angles x where the y-coordinate is greater than 1/2.
The angles in the first and second quadrants have positive y-coordinates. In the first quadrant (0° to 90°), sin(x) is increasing from 0 to 1. In the second quadrant (90° to 180°), sin(x) is decreasing from 1 to 0.
Thus, the solution for sin(x) > 1/2 is x ∈ (0°, 90°) ∪ (270°, 360°).
Next, let's consider cos(x) < 0. This means that the value of cos(x) is negative.
In the unit circle, cos(x) represents the x-coordinate of a point on the circle at angle x. For cos(x) < 0, we need to find the angles x where the x-coordinate is negative.
The angles in the second and third quadrants have negative x-coordinates. In the second quadrant (90° to 180°), cos(x) is negative. In the third quadrant (180° to 270°), cos(x) is also negative.
Thus, the solution for cos(x) < 0 is x ∈ (90°, 180°) ∪ (180°, 270°).
To find the common solution to both inequalities, we need to find the intersection of the solution sets.
The intersection of x ∈ (0°, 90°) ∪ (270°, 360°) and x ∈ (90°, 180°) ∪ (180°, 270°) is x ∈ (270°, 360°).
Therefore, the solution to the system of inequalities sin(x) > 1/2 and cos(x) < 0 is x ∈ (270°, 360°).


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili