
3^(4√x)-4*3^(√x)+3=0


Ответы на вопрос

////////////////////////////////////////




To solve the equation 3^(4√x) - 4 * 3^(√x) + 3 = 0, we can make a substitution to simplify it. Let's introduce a new variable u = 3^(√x).
Now we can rewrite the equation in terms of u:
u^4 - 4u + 3 = 0.
This is a quadratic equation in terms of u. To solve it, we can factorize or use the quadratic formula:
(u - 1)(u^3 + u^2 - 3u - 3) = 0.
The first factor gives us u = 1.
Now we need to solve the cubic equation u^3 + u^2 - 3u - 3 = 0. This can be done using numerical methods or factoring techniques, but it does not have a simple algebraic solution. One possible approach is to use numerical methods like the Newton-Raphson method or the bisection method to approximate the roots.
Once we find the values of u, we can substitute back into the original equation to solve for x. Since u = 3^(√x), we can rewrite it as:
3^(√x) = u.
Taking the logarithm base 3 of both sides, we get:
√x = log3(u).
Squaring both sides, we obtain:
x = [log3(u)]^2.
Repeat this process for each value of u to find the corresponding values of x. Keep in mind that due to the nature of the equation, there might be multiple solutions or no real solutions at all.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili