Вопрос задан 16.07.2023 в 01:59. Предмет Алгебра. Спрашивает Григорьева Дарья.

Раскройте знак модуля |х|-х

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванов Сергей.

Объяснение: если х >= 0, то |х| = х, |х| - х = х - х = 0.

Если х < 0, то |х| = -х, |х| - х = -х - х = -2х.

0 0
Отвечает Ичигин Эдуард.

x  \geqslant  0  \: =  > \:  y = x - x = 0 \\ x < 0 \:  =  >  \: y =  - x - x =  - 2x

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы раскрыть выражение |х| - х, нужно рассмотреть два возможных случая в зависимости от значения переменной х.

  1. Если х >= 0: В этом случае модуль |х| равен самой переменной, то есть |х| = х. Подставим это значение в исходное выражение: |х| - х = х - х = 0

  2. Если х < 0: В этом случае модуль |х| равен противоположному числу переменной, то есть |х| = -х. Подставим это значение в исходное выражение: |х| - х = -х - х = -2х

Таким образом, выражение |х| - х может быть раскрыто следующим образом:

  1. Для х >= 0: |х| - х = 0
  2. Для х < 0: |х| - х = -2х
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос