Вопрос задан 15.07.2023 в 20:04. Предмет Алгебра. Спрашивает Пиджакова Лера.

Розв’яжіть рівняння arcctg(2x+5)=3П/4

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сергейченко Арина.

Ответ:

х=-3

Объяснение:

arcctg(2x+5)=3П/4

2x+5=-1

2х=-6

х=-3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання рівняння arcctg(2x + 5) = 3π/4, спочатку перетворимо його в тригонометричний вигляд.

Арккотангенс (arcctg) можна перевести в тангенс за наступним співвідношенням: arcctg(x) = π/2 - arctan(x)

Застосуємо це до нашого рівняння: π/2 - arctan(2x + 5) = 3π/4

Спростимо це рівняння: arctan(2x + 5) = π/4

Тепер перейдемо до тангенсу: tan(arctan(2x + 5)) = tan(π/4)

2x + 5 = 1

Зведемо це до лінійного рівняння: 2x = 1 - 5

2x = -4

x = -4/2

x = -2

Таким чином, рішення рівняння arcctg(2x + 5) = 3π/4 є x = -2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос