
Cos(5pi-4x) =- корень 3/2


Ответы на вопрос

0
0





To solve the equation cos(5π - 4x) = -√3/2, we can start by finding the reference angle of -√3/2.
The reference angle for -√3/2 is π/6. This is because the cosine function is negative in the second and third quadrants, and the cosine value of π/6 is √3/2.
Now, we can solve for 5π - 4x = π/6 and 5π - 4x = 5π/6.
Solving for 5π - 4x = π/6: Subtract π/6 from both sides: 5π - 4x - π/6 = 0 Multiply both sides by 6 to eliminate the fraction: 30π - 24x - π = 0 Combine like terms: 29π - 24x = 0 Divide both sides by 29: -24x = -29π/29 x = π/24
Solving for 5π - 4x = 5π/6: Subtract 5π/6 from both sides: 5π - 4x - 5π/6 = 0 Multiply both sides by 6 to eliminate the fraction: 30π - 24x - 5π = 0 Combine like terms: 25π - 24x = 0 Divide both sides by 25: -24x = -25π/25 x = π/24
Therefore, the solutions to the equation cos(5π - 4x) = -√3/2 are x = π/24.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili