
Решите уравнения. 1) x2 - 4 = 0; 2) 9x2 = 0; 3) 5x2 = 0; 4) - 14x2 - 56 = 0; 5) x2 - 33 = 0; 6)
14x2 = - 140x; 7) -x2 - 8x = 0; 8) 2х2-4х=х(4х-3)

Ответы на вопрос

1. Х²=4
Х1=2
Х2=-2
2. Х=0
3.х=0
4. -14х²=56
Х²=-4
Корней нет
5.х²=33
Х1= корень из 33
Х2= -корень из 33
6. 14х²+140х=0
14х(х+10)=0
Х=0 и х=-10
7. -х(х+8)=0
Х=0 и х=-8
8. 2х²-4х=4х²-3х
2х²-4х²-4х+3х=0
-2х²-х=0
-х(2х+1)=0
Х=0 и 2х=-1
Х=0 и х=-0,5



Ответ:
Объяснение:
1) x² - 4 = 0; х²=4; х=±√4; х=±2; х1=-2; х2=2
2) 9x² = 0; х=0
3) 5x² = 0; х=0
4) - 14x² - 56 = 0;
-14(х²+4)=0; -14≠0;х²+4≠0
ответ: Уравнение не имеет действительных корней
5) x² - 33 = 0; x²=33; х=±√33; х1=-√33; х2=√33
6) 14x² = - 140x;
14x²+140х=0
14х(х+10)=0
х1=0; х2=-10
7) -x² - 8x = 0;
-х(х+8)=0
х1=0 либо х2=-8
8) 2х²-4х=х(4х-3)
2х²-4х=4х²-3х
2х²-4х-4х²+3х=0
-2х²-х=0
-х(2х+1)=0
х1=0; х2=-1/2=-0,5



- x^2 - 4 = 0: To solve this equation, we can factor the left side:
(x - 2)(x + 2) = 0
Setting each factor equal to zero gives us:
x - 2 = 0 or x + 2 = 0
Solving these equations gives us two solutions:
x = 2 or x = -2
- 9x^2 = 0: Dividing both sides of the equation by 9 gives us:
x^2 = 0
Taking the square root of both sides, we get:
x = 0
So the only solution is x = 0.
- 5x^2 = 0: Dividing both sides of the equation by 5 gives us:
x^2 = 0
Taking the square root of both sides, we get:
x = 0
So the only solution is x = 0.
- -14x^2 - 56 = 0: First, let's divide the entire equation by -14 to simplify it:
x^2 + 4 = 0
Subtracting 4 from both sides, we have:
x^2 = -4
Since the square of a real number cannot be negative, this equation has no real solutions.
- x^2 - 33 = 0: Adding 33 to both sides of the equation, we get:
x^2 = 33
Taking the square root of both sides, we have:
x = ±√33
So the solutions are x = √33 and x = -√33.
- 14x^2 = -140x: First, let's divide the entire equation by 14x to simplify it:
x = -10
So the solution is x = -10.
- -x^2 - 8x = 0: Factoring out an x from the equation, we get:
x(-x - 8) = 0
Setting each factor equal to zero gives us:
x = 0 or -x - 8 = 0
Solving the second equation for x, we have:
-x = 8
Multiplying both sides by -1, we get:
x = -8
So the solutions are x = 0 and x = -8.
- 2x^2 - 4x = x(4x - 3): Expanding the right side of the equation, we have:
2x^2 - 4x = 4x^2 - 3x
Rearranging the equation, we get:
4x^2 - 3x - 2x^2 + 4x = 0
Combining like terms, we have:
2x^2 + x = 0
Factoring out an x, we get:
x(2x + 1) = 0
Setting each factor equal to zero gives us:
x = 0 or 2x + 1 = 0
Solving the second equation for x, we have:
2x = -1
Dividing both sides by 2, we get:
x = -1/2
So the solutions are x = 0 and x = -1/2.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili