
(2х+2)^2>(х-5)^2Даю 20 баллов


Ответы на вопрос

Ответ:
(2x+2)^2>(x-5)^2
2x+2>x-5
x>-7



To solve the inequality , we need to find the values of that satisfy the inequality. Let's break down the steps to solve it:
Step 1: Expand both sides of the inequality:
Step 2: Substitute the expanded expressions back into the inequality:
Step 3: Move all terms to one side of the inequality to set it to zero:
Step 4: Simplify the inequality:
Step 5: Factor the quadratic expression, if possible. In this case, we can't factor it easily, so we can use the quadratic formula:
The quadratic formula is given by for the quadratic equation .
For our inequality , we have , , and .
Step 6: Apply the quadratic formula to find the critical points (where the expression equals zero):
Solving this equation, we get two critical points: and .
Step 7: Determine the sign of the expression in the intervals formed by the critical points.
Test a value in each interval:
For , let's use :
For , let's use :
For , let's use :
Step 8: Analyze the results:
- The expression is positive for and .
- The expression is negative for .
Step 9: Final conclusion:
The inequality is satisfied for and .
So, the solution to the inequality is or .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili