
A) 3х+4 х^2 ---------- = ------------ х^2-16 = х^2-16


Ответы на вопрос

Ответ: –1
Объяснение: во вложении




To solve the equation (3x + 4) / (x^2 - 16) = (x^2 - 16) / (x^2 - 16), we need to first simplify both sides of the equation and then find the values of x that satisfy the equation.
Step 1: Simplify the equation
On the left-hand side of the equation, we notice that (x^2 - 16) / (x^2 - 16) is equal to 1, as any number divided by itself is always 1.
So the equation simplifies to:
(3x + 4) / (x^2 - 16) = 1
Step 2: Factor the denominator on the left-hand side
The denominator (x^2 - 16) is a difference of squares, so we can factor it:
x^2 - 16 = (x + 4)(x - 4)
Step 3: Rewrite the equation
Now, the equation becomes:
(3x + 4) / ((x + 4)(x - 4)) = 1
Step 4: Clear the fraction
To get rid of the fraction, we can multiply both sides of the equation by (x + 4)(x - 4):
(3x + 4) = (x + 4)(x - 4)
Step 5: Expand and simplify
Expand the right-hand side:
3x + 4 = x^2 - 4x + 4x - 16
The 4x and -4x cancel out, and we are left with:
3x + 4 = x^2 - 16
Step 6: Move all terms to one side to set the equation to zero
x^2 - 3x - 20 = 0
Step 7: Factor the quadratic equation
Now we can factor the quadratic equation:
(x - 5)(x + 4) = 0
Step 8: Solve for x
Setting each factor to zero and solving for x:
x - 5 = 0 --> x = 5
x + 4 = 0 --> x = -4
So, the solutions to the original equation are x = 5 and x = -4. These values satisfy the equation (3x + 4) / (x^2 - 16) = (x^2 - 16) / (x^2 - 16).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili