
Обчисліть log 3 4×log5 7×log7 81


Ответы на вопрос

ОТВЕТ ВО ВЛОЖЕНИИИИИИИИИИ




To calculate the value of the expression "log₃(4) × log₅(7) × log₇(81)," we can use the property of logarithms that states:
logₐ(b) = logₓ(b) / logₓ(a)
where logₐ(b) is the logarithm of b to the base a, and logₓ is the natural logarithm.
Now, let's calculate each part step by step:
log₃(4) = logₓ(4) / logₓ(3) Since the base x is not specified, we can use the natural logarithm, denoted as "ln": logₓ(4) = ln(4) and logₓ(3) = ln(3) Therefore, log₃(4) = ln(4) / ln(3).
log₅(7) = logₓ(7) / logₓ(5) logₓ(7) = ln(7) and logₓ(5) = ln(5) Therefore, log₅(7) = ln(7) / ln(5).
log₇(81) = logₓ(81) / logₓ(7) logₓ(81) = ln(81) and logₓ(7) = ln(7) Therefore, log₇(81) = ln(81) / ln(7).
Now, let's multiply all these parts together:
log₃(4) × log₅(7) × log₇(81) = (ln(4) / ln(3)) × (ln(7) / ln(5)) × (ln(81) / ln(7))
Notice that ln(7) appears both in the numerator and denominator. We can cancel it out:
log₃(4) × log₅(7) × log₇(81) = (ln(4) / ln(3)) × (ln(81) / ln(5))
Now, we can simplify further:
log₃(4) × log₅(7) × log₇(81) = ln(4) × ln(81) / (ln(3) × ln(5))
Finally, we can use the property of logarithms that logₐ(b) × logₐ(c) = logₐ(b^c):
log₃(4) × log₅(7) × log₇(81) = ln(4^ln(81)) / ln(3) = ln(4^4) / ln(3) = ln(256) / ln(3)
To obtain a numeric approximation, we can calculate this using a calculator:
log₃(4) × log₅(7) × log₇(81) ≈ 5.54517796238 / 1.09861228867 ≈ 5.0528
So, the value of the expression is approximately 5.0528.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili