
(2,5-x)(2x+3)(x+4)>0 решите уравнение


Ответы на вопрос

Ответ:
это и есть ответ, он на картинке




To solve the inequality , we need to find the intervals of that satisfy the inequality. To do that, we can use the concept of interval notation and test the sign of the expression in each interval.
Step 1: Find the critical points by setting each factor equal to zero and solving for :
Step 2: Plot these critical points on a number line and choose test points in the regions created by these critical points. We'll test the sign of the expression for each interval:
- Test point (a value less than -4)
- Test point (a value between -4 and -1.5)
- Test point (a value between -1.5 and 2.5)
- Test point (a value greater than 2.5)
Step 3: Determine the sign of the expression for each test point:
- : , which is positive.
- : , which is negative.
- : , which is positive.
- : , which is negative.
Step 4: Analyze the intervals:
- The expression is positive in the interval and .
- The expression is negative in the interval and .
Step 5: Write the solution in interval notation:
The solution to the inequality is:
So, any value of that falls within the intervals and will satisfy the inequality.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili