Вопрос задан 12.07.2023 в 13:40. Предмет Алгебра. Спрашивает Климов Арсений.

X^2+13,3x-3,5=0 как это решить

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пралиев Нұрсұлтан.

Ответ:

Объяснение:

D= 176,89+ 14= 190,89

x1= (-13,3+√190,89)/2

x2= (-13,3-√190,89)/2

0 0
Отвечает Турпанов Михаил.

Ответ:

-13,3 +- корень 162,89 / 2

Объяснение:

Решим через дискриминант

по формуле b^2 - 4ac

13,3^2 - 4*1*(-3,5)

176,89 - (-14)

162,89 - это дискриминант

далее решаем по формуле

-b +- корень дискриминанта/2а и в итоге:

-13,3 +- корень 162,89 / 2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного квадратного уравнения вида x2+3x3.5=0x^2 + 3x - 3.5 = 0, можно использовать метод дискриминанта или формулу для нахождения корней квадратного уравнения.

  1. Метод дискриминанта:

Для уравнения вида ax2+bx+c=0ax^2 + bx + c = 0, дискриминант DD вычисляется по формуле D=b24acD = b^2 - 4ac.

Затем находим корни уравнения, используя следующие шаги:

  • Если D>0D > 0, то уравнение имеет два различных вещественных корня: x1=b+D2ax_1 = \frac{-b + \sqrt{D}}{2a} и x2=bD2ax_2 = \frac{-b - \sqrt{D}}{2a}.
  • Если D=0D = 0, то уравнение имеет один вещественный корень (корень кратности 2): x=b2ax = \frac{-b}{2a}.
  • Если D<0D < 0, то уравнение не имеет вещественных корней.

Применяя этот метод к нашему уравнению, получим: a=1a = 1, b=3b = 3, c=3.5c = -3.5.

Теперь вычислим дискриминант: D=3241(3.5)=9+14=23D = 3^2 - 4 \cdot 1 \cdot (-3.5) = 9 + 14 = 23.

Так как D>0D > 0, у уравнения есть два различных вещественных корня.

Теперь найдем корни: x1=3+23211.791x_1 = \frac{-3 + \sqrt{23}}{2 \cdot 1} \approx 1.791, x2=323214.791x_2 = \frac{-3 - \sqrt{23}}{2 \cdot 1} \approx -4.791.

  1. Формула для нахождения корней:

Если у нас уже есть дискриминант DD для уравнения ax2+bx+c=0ax^2 + bx + c = 0, то корни можно найти с помощью формулы:

x=b±D2ax = \frac{-b \pm \sqrt{D}}{2a}.

В нашем случае a=1a = 1, b=3b = 3, c=3.5c = -3.5 и D=23D = 23, поэтому:

x1=3+23211.791x_1 = \frac{-3 + \sqrt{23}}{2 \cdot 1} \approx 1.791, x2=323214.791x_2 = \frac{-3 - \sqrt{23}}{2 \cdot 1} \approx -4.791.

Таким образом, решения квадратного уравнения x2+3x3.5=0x^2 + 3x - 3.5 = 0 равны примерно 1.791 и -4.791.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос