Вопрос задан 12.07.2023 в 13:15. Предмет Алгебра. Спрашивает Ямадаев Руслан.

60 БАЛЛОВ Выясните, является ли число рациональным или иррациональным

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Крюков Артём.

A=\sqrt{\dfrac{1}{\sqrt{1,5-\sqrt2}}-\dfrac{1}{\sqrt{1,5+\sqrt2}}}\; \; ,\; \; A>0\\\\\\A^2=\dfrac{1}{\sqrt{1,5-\sqrt2}}-\dfrac{1}{\sqrt{1,5+\sqrt2}}=\dfrac{\sqrt{1,5+\sqrt2}-\sqrt{1,5-\sqrt2}}{(\sqrt{1,5+\sqrt2})(\sqrt{1,5-\sqrt2})}=\\\\\\=\dfrac{\sqrt{1,5+\sqrt2}-\sqrt{1,5-\sqrt2}}{\sqrt{2,25-2}}=\dfrac{\sqrt{1,5+\sqrt2}-\sqrt{1,5-\sqrt2}}{0,5}

(A^2)^2=A^4=\Big(\dfrac{\sqrt{1,5+\sqrt2}-\sqrt{1,5-\sqrt2}}{0,5}\Big)^2=\\\\\\=\dfrac{1,5+\sqrt2-2\sqrt{(1,5+\sqrt2)(1,5-\sqrt2)}+1,5-\sqrt2}{0,5^2}=\\\\\\=\dfrac{3-2\sqrt{2,25-2}}{0,25}=\dfrac{3-1}{0,25}=\dfrac{2}{0,25}=8

A=\sqrt[4]{8}\; ,\; A>0  иррациональное число

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения, является ли число рациональным или иррациональным, нам нужно знать его десятичное представление. В данном случае у нас есть число "60 БАЛЛОВ", но оно не содержит десятичной части.

Если число представлено целым числом без десятичной части (например, 60), то оно является рациональным. Рациональные числа - это числа, которые можно представить в виде дроби, где числитель и знаменатель являются целыми числами.

Если у вас есть конкретное число с десятичной частью, пожалуйста, предоставьте его, и я смогу определить, является ли оно рациональным или иррациональным.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос