Вопрос задан 10.07.2023 в 22:58. Предмет Алгебра. Спрашивает Мирный Игорь.

Знайти b1, якщо b5=162, q=3​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Исаев Инокентий.

Ответ:

Объяснение:bn=b1•q^n-1 из формули n=5 162=b1•81 b1=2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти b1 (перший член) геометричної прогресії, з відомим b5 (п'ятий член) та q (знаменником), можна скористатися формулою:

b_n = b_1 * q^(n-1),

де b_n - n-ий член прогресії, b_1 - перший член прогресії, q - знаменник, n - номер члена прогресії.

В даному випадку, маємо b5 = 162 та q = 3. Підставляючи ці значення, отримаємо:

162 = b1 * 3^(5-1).

Спростимо це рівняння:

162 = b1 * 3^4, 162 = b1 * 81.

Тепер розділимо обидві сторони на 81, щоб знайти b1:

b1 = 162 / 81, b1 = 2.

Отже, перший член геометричної прогресії дорівнює 2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос