
Вопрос задан 10.07.2023 в 17:54.
Предмет Алгебра.
Спрашивает Хилькевич Альбина.
Найдите корень уравнения -x^2+4x+3=x^2-x-(1+2x^2)


Ответы на вопрос

Отвечает Пасичная Ольга.
Ответ:
Решение на фото.
Объяснение:




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давайте решим данное уравнение:
-x^2 + 4x + 3 = x^2 - x - (1 + 2x^2)
Перенесем все члены в левую часть уравнения:
0 = x^2 - x - (1 + 2x^2) + x^2 - 4x - 3
Упростим:
0 = 2x^2 - 5x - 4
Теперь попробуем решить это квадратное уравнение. Мы можем использовать формулу дискриминанта для нахождения корней:
Дискриминант (D) = b^2 - 4ac
Для данного уравнения a = 2, b = -5 и c = -4:
D = (-5)^2 - 4 * 2 * (-4) = 25 + 32 = 57
Поскольку дискриминант положительный, у нас есть два действительных корня. Продолжим, используя квадратное уравнение:
x = (-b ± √D) / (2a)
x = (-(-5) ± √57) / (2 * 2) = (5 ± √57) / 4
Таким образом, корни уравнения -x^2 + 4x + 3 = x^2 - x - (1 + 2x^2) равны:
x1 = (5 + √57) / 4 x2 = (5 - √57) / 4


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili