Вопрос задан 10.07.2023 в 03:02. Предмет Алгебра. Спрашивает Уткова Алина.

Найдите корень уравнения √х-5=√2х-14

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Згурский Макс.

Ответ:

х=9

Объяснение:

1. Возвели в квадрат обе части 2.перенесли не известное в левую часть и сменили ее знаки 3.привели подобные члены 4. изменили знаки обоих частей 5.проверили ,является ли данное значение решением уравнения 6. упростили равенство и оно оказалось верным. Следовательно х=9 является решением уравнения


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим это уравнение шаг за шагом.

√x - 5 = √(2x) - 14

Для начала, возведем оба выражения в квадрат, чтобы убрать корни:

(√x - 5)^2 = (√(2x) - 14)^2

Раскроем скобки:

x - 10√x + 25 = 2x - 28√(2x) + 196

Теперь объединим все члены с x на одной стороне уравнения, а все члены с корнем на другой:

x - 2x = 10√x - 28√(2x) + 196 - 25

-x = 10√x - 28√(2x) + 171

Перенесем все члены с корнем на одну сторону уравнения:

-x - 10√x + 28√(2x) = 171

Теперь сгруппируем члены с x:

-11√x + 28√(2x) = 171

Далее, вынесем наименьший общий множитель из корней, чтобы упростить уравнение:

-11√x + 28√(2x) = 171

Перенесем 28√(2x) на другую сторону:

-11√x = 171 - 28√(2x)

Возведем оба выражения в квадрат снова:

(-11√x)^2 = (171 - 28√(2x))^2

121x = 29241 - 9576√(2x) + 784(2x)

Раскроем скобки:

121x = 29241 - 9576√(2x) + 1568x

Перенесем все члены с x на одну сторону:

121x - 1568x = 29241 - 9576√(2x)

-1447x = 29241 - 9576√(2x)

Для того чтобы продолжить решение уравнения, необходимо ввести дополнительное условие или использовать численные методы решения. Решение данного уравнения с использованием аналитических методов не представляется возможным.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос