
Один из катетов прямоугольного треугольника равен 32 см, а его гипотенуза равна 64 см. Тогда
острые углы этого треугольника равны ________.

Ответы на вопрос

Ответ:
30 60
Объяснение:
т.к. катет лежащий против угла в 30 градусов равен половине гипотинузы



Для решения этой задачи можно воспользоваться тригонометрическими соотношениями в прямоугольном треугольнике.
Один из катетов равен 32 см, а гипотенуза равна 64 см. По теореме Пифагора в прямоугольном треугольнике выполняется соотношение:
катет^2 + катет^2 = гипотенуза^2
32^2 + катет^2 = 64^2
1024 + катет^2 = 4096
катет^2 = 4096 - 1024
катет^2 = 3072
катет = √3072
катет ≈ 55.42
Теперь мы знаем значения двух катетов: 32 см и примерно 55.42 см.
Чтобы найти острые углы треугольника, можно использовать тригонометрический арктангенс (тангенс обратный). Для каждого острого угла мы можем найти соответствующее отношение катетов.
Угол α (угол, противолежащий катету длиной 32 см):
тангенс α = противолежащий катет / прилежащий катет
тангенс α = 32 / 55.42
α ≈ 29.17°
Угол β (угол, противолежащий катету длиной около 55.42 см):
тангенс β = противолежащий катет / прилежащий катет
тангенс β = 55.42 / 32
β ≈ 60.83°
Таким образом, острые углы прямоугольного треугольника равны примерно 29.17° и 60.83°.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili