
__-n¹⁰=(5m²-__)(5m²+__)


Ответы на вопрос

Ответ:
25m^4-n^10=(5m^2-n^5)(5m^2+n^5)



It seems like you want to solve for the values of the blanks in the equation __ - n¹⁰ = (5m² - __)(5m² + __).
Let's work through it step by step:
Given: __ - n¹⁰ = (5m² - __)(5m² + __)
First, let's expand the right side of the equation using the difference of squares formula: (a - b)(a + b) = a² - b².
(5m² - __)(5m² + __) = (5m²)² - (__²)
Now, simplify the right side further: (5m⁴ - __²)
So, the equation becomes: __ - n¹⁰ = 5m⁴ - __²
Now, let's isolate the blank on one side of the equation. Add n¹⁰ to both sides: __ = 5m⁴ - __² + n¹⁰
Since we're looking for integer solutions, let's consider possible values for the blanks. We'll use a variable, let's say "x," for the unknown value. So, we have:
x = 5m⁴ - x² + n¹⁰
Now, this equation involves multiple variables and unknowns. To determine specific values for "x," "m," and "n," we would need additional information or context.
If you have specific values for "m" and "n" or any constraints on the variables, please provide that information, and I can assist you further.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili