Вопрос задан 09.07.2023 в 09:39. Предмет Алгебра. Спрашивает Сизов Ваня.

Пожалуйста помогите решить уравнение x²+4x11=0 x²-2x-23=0 5x²+4x-10=0 2x²-5x-14=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Марокко Даниил.

Ответ:

1)x1 = -44;x2 = 0

2)x1 = 1-2√6;x2=1+2√6

3)x1=-2-3√6/5;x2=-2+3√6/5

4)x1=5-√137/4;x2=5+√137/4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам решить эти квадратные уравнения. Давайте рассмотрим их по очереди:

  1. x² + 4x + 11 = 0: Это уравнение не имеет действительных корней, так как дискриминант отрицательный (D = b² - 4ac = 4² - 4 * 1 * 11 = -36). Таким образом, решений нет.

  2. x² - 2x - 23 = 0: Дискриминант D = (-2)² - 4 * 1 * (-23) = 4 + 92 = 96. Это положительное число, следовательно, уравнение имеет два действительных корня. x₁ = (-b + √D) / (2a) = (2 + √96) / 2 ≈ 6.18 x₂ = (-b - √D) / (2a) = (2 - √96) / 2 ≈ -4.18

  3. 5x² + 4x - 10 = 0: Дискриминант D = 4² - 4 * 5 * (-10) = 16 + 200 = 216. Это положительное число, поэтому уравнение имеет два действительных корня. x₁ = (-b + √D) / (2a) = (-4 + √216) / (2 * 5) ≈ 1.29 x₂ = (-b - √D) / (2a) = (-4 - √216) / (2 * 5) ≈ -2.29

  4. 2x² - 5x - 14 = 0: Дискриминант D = (-5)² - 4 * 2 * (-14) = 25 + 112 = 137. Это положительное число, следовательно, уравнение имеет два действительных корня. x₁ = (-b + √D) / (2a) = (5 + √137) / 4 ≈ 3.52 x₂ = (-b - √D) / (2a) = (5 - √137) / 4 ≈ -1.27

Таким образом, корни уравнений:

  1. Уравнение x² + 4x + 11 = 0 не имеет действительных корней.
  2. Уравнение x² - 2x - 23 = 0 имеет корни: x₁ ≈ 6.18 и x₂ ≈ -4.18.
  3. Уравнение 5x² + 4x - 10 = 0 имеет корни: x₁ ≈ 1.29 и x₂ ≈ -2.29.
  4. Уравнение 2x² - 5x - 14 = 0 имеет корни: x₁ ≈ 3.52 и x₂ ≈ -1.27.
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос