
Катети прямокутного трикутника дорівнює 5 см і 12 см. Знайдіть синус , косинус і тангенс меншого
гострого кута.

Ответы на вопрос

Ответ:
по теореме пифагора в треуголике одна сторона 5 х другая 12 х это катеты,26 см это гипотенуза 26^2 = (5 х) ^2 + (12 х) ^2,676=169 х^2, х^2=4, х=2, одна сторона=10 см, другая=24 см S=24*10=240 кв. см всё так



Давайте позначимо катети прямокутного трикутника як a = 5 см і b = 12 см. Ми шукаємо синус, косинус і тангенс меншого гострого кута.
Спершу, ми можемо знайти гіпотенузу (c) за допомогою теореми Піфагора: c² = a² + b² c² = 5² + 12² c² = 25 + 144 c² = 169 c = √169 c = 13 см
Тепер, для меншого гострого кута (нехай його позначимо як θ), ми можемо використовувати співвідношення: синус(θ) = a / c косинус(θ) = b / c тангенс(θ) = a / b
Підставимо значення: синус(θ) = 5 / 13 косинус(θ) = 12 / 13 тангенс(θ) = 5 / 12
Отже, для меншого гострого кута: синус(θ) ≈ 0.3846 косинус(θ) ≈ 0.9231 тангенс(θ) ≈ 0.4167
Будь ласка, зауважте, що відокремлення синусу, косинусу і тангенсу відбувається за допомогою використання пропорцій трикутника, а значення округлені до чотирьох десяткових знаків.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili