
Доведіть , що функція f(x)=6-4x-x^2-x^2/3 на множині R є спадною срочно с обьяснением пожалуйста


Ответы на вопрос

Доведіть , що функція f(x)=6-4x-x^2-x^3/3 на множині R є спадною
Объяснение: f ' (x) = ( 6-4x-x²-x³/3 ) ' =6 ' -(4x) ' -(x²) ' - ( x³/3 ) ' =
0 - 4 -2x -3x²/3 = -x² -2x -4 = -(x ² +-2x +1) - 3 = - (x+1)² -3 =
- ( (x+1)² +3) < 0 , следовательно функция убывающая для любого значения x ∈ D(f) ; D(f) : x ∈ ( -∞ ; +∞) || x ∈ R ||
D(f) _Область Определения Функции ( ООФ ).



Для того чтобы довести, что функция f(x) = 6 - 4x - x^2 - x^(2/3) є спадною на множині R (всіх дійсних числах), ми можемо використати похідну цієї функції. Функція буде спадною, якщо її похідна буде від'ємною на всьому діапазоні значень x.
Спершу знайдемо похідну функції f(x):
f(x) = 6 - 4x - x^2 - x^(2/3)
f'(x) = -4 - 2x - (2/3)x^(-1/3)
Тепер перевіримо знак похідної на всьому діапазоні дійсних чисел. Для цього розглянемо різні можливі випадки:
Якщо x > 0: Тут f'(x) = -4 - 2x - (2/3)x^(-1/3). Всі доданки в похідній від'ємні для позитивних значень x, отже, f'(x) < 0.
Якщо x < 0: Тут f'(x) = -4 - 2x - (2/3)x^(-1/3). Перший та другий доданки в похідній від'ємні для від'ємних значень x, але третій доданок (2/3)x^(-1/3) буде додатнім, оскільки x^(-1/3) буде від'ємним для від'ємних x. Таким чином, f'(x) < 0.
Якщо x = 0: Тут f'(x) = -4 - 2x - (2/3)x^(-1/3). Всі доданки в похідній від'ємні, отже, f'(x) < 0.
Отже, ми бачимо, що незалежно від значень x функція f'(x) завжди менше нуля. Це означає, що функція f(x) = 6 - 4x - x^2 - x^(2/3) є спадною на всьому діапазоні дійсних чисел R.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili