Вопрос задан 06.07.2023 в 22:15. Предмет Алгебра. Спрашивает Бабаев Руслан.

Сократите дробь 27а^4b^2/18a^3b^5 4х+12/3х+х^2​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фомин Рашид.

 \frac{27a \times 4b \times 2}{18a \times 3b \times 5}

сокращаем:

1) 27а и 18а на 9х

2) 4b и 3b на b

 \frac{3 \times 4 \times 2}{2 \times 3 \times 5}

сокращаем:

3) 3 и 3

4) 2 и 2

 \frac{4}{5}

_____________________________________________

 \frac{4x + 12}{3x + x {}^{2} }

раскладываем на множители

 \frac{4(x + 3)}{x(x + 3)}

сокращаем (х+3)

 \frac{4}{x}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте начнем с упрощения дроби 27a^4b^2 / 18a^3b^5:

27a^4b^2 / 18a^3b^5 = (27/18) * (a^4 / a^3) * (b^2 / b^5) = (3/2) * a^(4-3) * b^(2-5) = (3/2) * a * b^(-3) = (3a) / (2b^3)

Теперь займемся упрощением дроби (4x + 12) / (3x + x^2):

Сначала можно вынести общий множитель 4 из числителя:

(4x + 12) / (3x + x^2) = 4 * (x + 3) / (3x + x^2)

Теперь можно разложить x^2 на x * x:

4 * (x + 3) / (3x + x^2) = 4 * (x + 3) / (x * (3 + x))

Заметим, что (x + 3) можно разложить на два слагаемых:

4 * (x + 3) / (x * (3 + x)) = 4x / (x * (3 + x)) + 12 / (x * (3 + x))

Таким образом, дробь разложилась на две части:

  1. 4x / (x * (3 + x))
  2. 12 / (x * (3 + x))

Вот и упрощенные дроби:

  1. 3a / (2b^3)
  2. 4x / (x * (3 + x)) + 12 / (x * (3 + x))
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос