To solve the equation 33x+9⋅22x=4x+32+3x, we can use algebraic techniques to isolate the variable x. Here's the step-by-step process:
Given equation: 33x+9⋅22x=4x+9+3x
Step 1: Express all terms with the same base
Rewrite 9 as 32 and 22x as (2x)2:
33x+32⋅(2x)2=4x+9+3x
Step 2: Simplify the exponents
Apply the exponent properties:
33x+34⋅22x=4x+9+3x
Step 3: Express 34 as 81
33x+81⋅22x=4x+9+3x
Step 4: Rewrite 22x as (2x)2 again
33x+81⋅(2x)2=4x+9+3x
Step 5: Apply the exponent property (am)n=am⋅n
33x+81⋅22x=4x+9+3x
Step 6: Distribute the exponent in 22x
33x+81⋅22x=4x+9+3x
Step 7: Notice that 81=34
33x+34⋅22x=4x+9+3x
Step 8: Apply the exponent properties again
33x+32+2x=4x+9+3x
Step 9: Combine like terms on both sides
33x+32x+2=4x+9+3x
Step 10: Express 32x+2 as (3x)2⋅32
33x+(3x)2⋅32=4x+9+3x
Step 11: Simplify the exponents further
33x+32x⋅9=4x+9+3x
Step 12: Now the equation is in a form where all terms have the same base. Combine like terms.
33x+32x⋅9=4x+9+3x
Step 13: Express 9 as