Вопрос задан 06.07.2023 в 05:27. Предмет Алгебра. Спрашивает Кобызький Михаил.

Способом сложения решите систему уравнений. -2x+3y=11 3x+2y=3 Распишите подробнее, пожалуйста.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Перебейніс Женя.

Ответ:

Вот

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам решить эту систему уравнений методом сложения.

Дана система уравнений:

  1. -2x + 3y = 11
  2. 3x + 2y = 3

Шаг 1: Умножим первое уравнение на 3 и второе уравнение на 2, чтобы сделать коэффициенты при x в обоих уравнениях одинаковыми:

  1. -6x + 9y = 33
  2. 6x + 4y = 6

Шаг 2: Теперь сложим оба уравнения, чтобы исключить x. Сложим левые части и правые части уравнений: (-6x + 9y) + (6x + 4y) = 33 + 6 13y = 39

Шаг 3: Разделим обе стороны на 13, чтобы найти значение y: y = 39 / 13 y = 3

Шаг 4: Подставим найденное значение y в одно из исходных уравнений, например, во второе: 3x + 2 * 3 = 3 3x + 6 = 3 3x = -3 x = -1

Таким образом, решение системы уравнений - это x = -1 и y = 3. Подставив эти значения в исходные уравнения, вы можете проверить, что они удовлетворяют обеим уравнениям.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос