To prove the trigonometric identity sin22a+4sin2a−4sin22a−4sin2a=tan4a, we will start by simplifying the left-hand side of the equation step by step:
Given expression: sin22a+4sin2a−4sin22a−4sin2a
Step 1: Factor out 4 from the numerator and denominator:
4(4sin22a+sin2a−1)4(4sin22a−sin2a)
Step 2: Notice that 4sin22a=41−cos22a (using the identity sin2x=1−cos2x):
4(41−cos22a+sin2a−1)4(41−cos22a−sin2a)
Step 3: Distribute 4 in the numerator and denominator:
1−cos22a+4sin2a−41−cos22a−4sin2a
Step 4: Use the double-angle identity for cos2a:
1−(2cos2a−1)+4sin2a−41−(2cos2a−1)−4sin2a
Step 5: Simplify:
−2cos2a+4sin2a2−2cos2a−4sin2a
Step 6: Apply the Pythagorean identity sin2a+cos2a=1:
−2cos2a+4(1−cos2a)2−2cos2a−4(1−cos2a)
Step 7: Simplify:
−2cos2a+4−4cos2a2−2cos2a−4+4cos2a
Step 8: Combine like terms:
2−6cos2a2cos2a−2
Step 9: Divide both the numerator and denominator by 2:
1−3cos2acos2a−1
Step 10: Use the identity
0
0