
Знайти абсцису точки перетину прямих: x+7y-5 = 0, 3x-7y-7 = 0


Ответы на вопрос

Ответ:
х=3
Объяснение:
Чтобы найти точку пересечения прямых, надо решить систему этих уравнений.
Из первого уравнения найдем х=5-7у и подставим во второе уравнение, 3(5-7у)-7у-7=0
15-21у-7у-7=0
-28у=-8
у=8/28=2/7
х=5-7(2/7)=5-2=3



Система
х+7у=5
3х-7у=7 сложим
-----
4х=12
х=3 подставим в 1 ур-ние
---------
3+7у=5
7у=2
у=2/7
Ответ: (3; 2/7). Это координаты точки пересечения.
Абсцисса х=3. Это ответ.



Для знаходження абсциси точки перетину прямих спершу знайдемо координати цієї точки, розв'язавши систему рівнянь:
Спочатку подамо дані рівняння у зручному вигляді:
- x + 7y - 5 = 0
- 3x - 7y - 7 = 0
Зробимо суму обох рівнянь для усунення y:
(x + 7y - 5) + (3x - 7y - 7) = 0 + 0 4x - 12 = 0
Тепер розв'яжемо останнє рівняння відносно x:
4x = 12 x = 12 / 4 x = 3
Отже, абсциса точки перетину прямих дорівнює x = 3.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili