Вопрос задан 04.07.2023 в 15:33. Предмет Алгебра. Спрашивает Казакевич Святослав.

Пожалуйста помогите разложить на множители ac^4-c^4+ac^3-c^3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пржегарлинский Дима.

Ответ:

Объяснение:

ac^4-c^4+ac^3-c^3=c^4(a-1)+c^3(a-1)=(a-1)(c^4+c^3)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разложим выражение на множители по очереди.

ac^4 - c^4: Здесь можно выделить общий множитель c^4, получая: c^4(a - 1).

ac^3 - c^3: Здесь можно выделить общий множитель c^3, получая: c^3(a - 1).

Теперь у нас есть две группы с общими множителями (a - 1) и (c^3). Мы можем сгруппировать эти множители и получить:

c^4(a - 1) + c^3(a - 1).

Обратите внимание, что оба слагаемых имеют общий множитель (a - 1). Мы можем вынести его за скобки:

(a - 1)(c^4 + c^3).

Таким образом, выражение ac^4 - c^4 + ac^3 - c^3 можно разложить на множители как (a - 1)(c^4 + c^3).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос